website builder


Processes or demonstrations concieved and deployed by Greenskill's founder.

1983-1986. Identification and isolation of heterocyst specific gene sequences from filamentous blue-green algae.  Transcriptomics of cell differentiation and nitrogen fixation.

1986-1989. Blue-Green Biotech - artificially illuminated photobioreactor (PBR) system powered by biogas generated electricity from the anaerobic digestion of chicken manure. Filtered digestate supplied the nutrients for Spirulina cultivation in the PBR.

In 1993 we designed and deployed the UK’s first algae based wastewater treatment process which employed an auto-flocculating microbial consortia, primarily comprising Chlorella, Scenedesmus and bacteria, to effect nutrient removal as tertiary treatment. The 5000 litre helically tubular Biocoil photobioreactor incorporated an automatic tube cleaning system using ‘pigs’. Located at Severn Trent PLC's Stoke Bardolph STW in Nottingham, the system effectively removed N & P with an HRT of 1 day, however, the running costs at that time were unjustifiable.

1993 Working with the late Dr Paul Jenkins from the University of the West of England, we fueled a diesel engine using powdered algae. This work was featured on the BBC's Tomorrow's World at the time. (video above)

1994-1995. Effluents from food and agri operations are too strong (BOD>10,000mg/l) to be treated using algae alone. In this work we used the Purple Photorophic bacteria (PSB) Rhodopseudomonas sp and Rhodobacter sp. as a pretreatment stage to consume and reduce the high organic load in the effluent, down to levels  which then allowed further polishing and nutrient removal by algae. The excess PSB biomass makes an ideal fish feed.

1994-1996. The disposal of chicken manure is a global problem. In this project we coupled anaerobic digestion (thermophilic) to our PSB/algae process to convert the manure into renewable energy, fish feed and soil conditioner/fertiliser.

1994-1995 Biotechna Ltd/Escola Superior de Biotecnologia (ESB), Lisboa. Two stage Biocoil PBR system for the production of Beta Carotene from Dunalliella salina. The unit was constructed in the UK and transported to site near Sines in Portugal.

1995. Dorking laboratories. Spirulina production in an airlift driven Biocoil.

1997-2000. The SolHaus® is an algae biofilm based process that recycles and purifies the warm water required for Tilapia growth. This results  in lower running costs when compared with conventional aquaculture recycle systems. SolHaus® fish production advantages over other commercial fish production systems include: 

Has few geographic limitations on location of production 

Reduced feed inventory due to algal supplementation of feed

Allows for better quality control of product than other commercial production systems or wild  capture fisheries 

Allows for better control of diseases and contaminants

Provides much better control of predators than pond systems

Eliminates waste management problems through zero volume of waste water

Lower energy costs

Through control of the fish production environment, provides opportunity to time production  to the market’s signals rather than the seasons of the year. 

Zero oxygen costs

Integral carbon dioxide and ammonia removal